
Package: bsnsing (via r-universe)
October 18, 2024

Type Package

Title Bsnsing: A Decision Tree Induction Method Based on Recursive
Optimal Boolean Rule Composition

Version 1.0.1

Author Yanchao Liu

Maintainer Yanchao Liu <yanchaoliu@wayne.edu>

Description The bsnsing package provides functions for training a
decision tree classifier, making predictions and generating
latex code for plotting. It solves the two-class and
multi-class classification problems under the supervised
learning paradigm. While building a decision tree, bsnsing uses
a Boolean rule involving multiple variables to split a node.
Each split rule is identified by solving an optimization
problem. Use the bsnsing function to build a tree, the predict
function to make predictions and the show function to plot the
tree. The paper is at <arXiv:2205.15263>. Source code and more
data sets are at <https://github.com/profyliu/bsnsing>.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports lpSolve, methods

Suggests slam, cplexAPI, gurobi, C50, party, rpart, tree

Repository https://profyliu.r-universe.dev

RemoteUrl https://github.com/profyliu/bsnsing

RemoteRef HEAD

RemoteSha c6abcc9f4e2f02a01192dddbaef5a5668a84326f

Contents
bsnsing-package . 2

1

https://arxiv.org/abs/2205.15263
https://github.com/profyliu/bsnsing

2 bsnsing-package

auto . 4
binarize . 4
binarize.factor . 5
binarize.numeric . 6
binarize.y . 7
BreastCancer . 8
bscontrol . 8
bslearn . 10
bsnsing . 11
bsnsing.default . 12
bsnsing.formula . 13
get_os . 14
GlaucomaMVF . 14
iris . 15
mbsnsing-class . 15
plot.bsnsing . 15
plot.mbsnsing . 17
predict.bsnsing . 17
predict.mbsnsing . 18
print.bscontrol . 19
print.bsnsing . 19
print.mbsnsing . 20
print.summary.bsnsing . 20
print.summary.mbsnsing . 21
prt.bscontrol . 21
prt.bsnsing . 22
prt.mbsnsing . 22
prt.summary.bsnsing . 23
prt.summary.mbsnsing . 23
ROC_func . 24
show.bsnsing . 25
show.mbsnsing . 26
summary.bsnsing . 27
summary.mbsnsing . 27

Index 28

bsnsing-package bsnsing: A decision tree induction method based on recursive optimal
boolean rule composition

Description

The bsnsing package provides functions for building a decision tree classifier and making predic-
tions. It solves a mixed-integer programming (MIP) model to maximize the Gini reduction at each
node split, and each node split rule can utilize multiple input variables. Benchmarking experi-
ments on 75 open data sets suggest that bsnsing trees are the most capable of discriminating new
cases compared to trees trained by other decision tree codes including the rpart, C50, party and

bsnsing-package 3

tree packages in R. Compared to other optimal decision tree packages, including DL8.5, OSDT,
GOSDT and indirectly more, bsnsing stands out in its training speed, ease of use and broader ap-
plicability without losing in prediction accuracy. For more information, please check out the paper
https://arxiv.org/abs/2205.15263, to be published in INFORMS Journal on Computing.

The ENUM algorithm

The default method for solving the MIP model is the implicit enumeration (ENUM) algorithm,
while other solvers including GUROBI, CPLEX and lpSolve can be used (via specifying the opt.solver
option in the bsnsing function). However, the users are strongly suggested to compile the bslearn.c
file, make it into a shared library (e.g., .dylib, .so or .dll binary file) and paste the binary file in
the work directory. In this way, the bsnsing will leverage the compiled code (instead of the R
code) for the ENUM algorithm, which runs much (~40x) faster. All benchmarking experiments
were run using the compiled ENUM algorithm. The C source file and the MAKE file can be found
at https://github.com/profyliu/bsnsing. Pre-compiled binary files for different target plat-
forms are also provided there for the convenience of the users (just download the .dylib, .so or the
.dll file, depending on the operating system, and put it in the work directory). Future updates of this
package will internalize the compilation step, but for now only the R implementation of the ENUM
algorithm is included in the package source, so serious users please take the extra step outlined
above.

More data sets

Several data frames (i.e., auto, iris, GlaucomaMVF and BreastCancer) used in the example code
are included in this package. More two-class and multi-class classification data sets can be found at
https://github.com/profyliu/bsnsing.

Learn functions

The learn (train) functions include bsnsing, bsnsing.formula and bsnsing.default.

Predict functions

The predict functions include: predict.bsnsing and predict.mbsnsing.

Plot functions

A bsnsing object (tree) can be plotted into a PDF file, or in the form of latex code, by the function
show.bsnsing. The ROC curve can be plotted using the function ROC_func.

Auxilliary functions

Here is a list of internal functions of the package that are open for end users. summary.bsnsing
summary.mbsnsing binarize, binarize.numeric, binarize.factor, binarize.y, bslearn,
bscontrol

Author(s)

Yanchao Liu

https://arxiv.org/abs/2205.15263
https://github.com/profyliu/bsnsing
https://github.com/profyliu/bsnsing

4 binarize

auto auto

Description

A test data set.

Usage

auto

Format

A data frame with 392 rows and 8 variables

Source

http://github.com/profyliu/bsnsing

binarize Create Binary Variables by the Classification Target

Description

Create a set of variables (columns) with binary values for each column in the input data. For
a variable with values of 0 and 1, the column is retained and no new column is created. For a
numeric variable, the function binarize.numeric is called. For a factor column, the function
binarize.factor is called.

Usage

binarize(
x,
y,
target = stop("'target' (0 or 1) must be provided"),
control = bscontrol()

)

Arguments

x a data frame or matrix to be binarized.

y a vector with two unique values (0 and 1). It is the response variable that guides
the optimal discretization of variables in x.

target the level of y (0 or 1) which indicates the boolean rule target

http://github.com/profyliu/bsnsing

binarize.factor 5

control a list or a bscontrol() object. The list should contain the following three at-
tributes: nseg.numeric, a positive integer indicating the maximum number of
segments used in discretizing a numeric variable, nseg.factor, a positive inte-
ger indicating the maximum number of levels allowed for a factor variable, and
bin.size, a positive integer indicating the minimum number of observations to
fall in a segment.

Value

a data frame containing binary variables, or a character string describing the rule that perfectly split
the target.

Examples

Not run:
Load and prepare data
x <- auto[, c('mpg', 'cylinders', 'displacement')]
x$cylinders <- as.factor(x$cylinders)
y <- ifelse(auto$origin == 'USA', 1L, 0L)
binarize x by y = 1
bx1 <- binarize(x, y, target = 1)
head(bx1)
binarize x by y = 0
bx0 <- binarize(x, y, target = 0)
head(bx0)
when selecting only one column from a data frame, use drop = FALSE to maintain
binarize(auto[,'mpg', drop = FALSE], y, target = 1)

End(Not run)

binarize.factor Create Binary Features based on a Factor Vector

Description

Create binary dummy variables based on a factor variable. This function is used internally by
binarize.

Usage

binarize.factor(x, name, y, segments = 10, bin.size = 5)

Arguments

x a numeric vector.

name a character string, the variable name of x.

y a numeric or integer vector of the same length as x, consisting of two unique
values: 0 and 1.

6 binarize.numeric

segments a positive integer indicating the maximum number of levels allowed in the factor
variable.

bin.size a positive integer. It is the minimum number of observations required to fall into
each bin.

Value

a data frame with binary (0 and 1) entries. The column names are indicative of the conditions used
to form the corresponding columns.

binarize.numeric Create Binary Features based on a Numeric Vector

Description

Discretize a continuous variable x by splitting its range at a sequence of cutpoints. The cutpoints
are determined so as to effectively split the binary target y. This function is used internally by
binarize.

Usage

binarize.numeric(
x,
name,
y,
target = stop("Must provide a target, 0 or 1"),
segments = 10,
bin.size = 5,
node.size = 10

)

Arguments

x a numeric vector.

name a character string, the variable name of x.

y a numeric or integer vector of the same length as x, consisting of two unique
values: 0 and 1.

target a scalar, valued 0 or 1, indicating the target level of y.

segments a positive integer, any value below 3 is set to 3. It is the maximum number of
segments the range of x is divided into.

bin.size a positive integer. It is the minimum number of observations required to fall into
each bin.

node.size a positive integer. If either child node is smaller than the node.size, do not return
the perfect rule.

binarize.y 7

Value

a data frame with binary (0 and 1) entries, or a character string describing the rule that perfectly
splits y. If a data frame is returned, the column names are indicative of the conditions used to form
the corresponding columns.

binarize.y Recode a Variable with Two Unique Values into an 0/1 Vector

Description

Recode a Variable with Two Unique Values into an 0/1 Vector

Usage

binarize.y(y, verbose = F)

Arguments

y a vector, must contain two unique values.

verbose a logical value, TRUE or FALSE, indicating whehter details are to be printed on
the screen.

Value

a list with three elements: y, a vector of the same length as y, whose entries are coded to 0 and 1,
coding.scheme, a character string describing the map from the original coding to 0/1 coding, and
ycode, a character vector containing the original level names of y.

Examples

y <- factor(c('good', 'bad', 'good', 'good', 'bad'))
(yb <- binarize.y(y))
y <- c(TRUE, FALSE, FALSE, FALSE, TRUE)
(yb <- binarize.y(y))
y <- c(1, 2, 2, 1, 2)
(yb <- binarize.y(y))

8 bscontrol

BreastCancer BreastCancer

Description

A test data set.

Usage

BreastCancer

Format

A data frame with 699 rows and 10 variables.

Source

http://github.com/profyliu/bsnsing

bscontrol Define Parameters for the bsnsing Fit

Description

Define Parameters for the bsnsing Fit

Usage

bscontrol(
bin.size = 5,
nseg.numeric = 20,
nseg.factor = 20,
num2factor = 10,
node.size = 0,
stop.prob = 0.9999,
opt.solver = c("enum_c", "enum", "greedy", "hybrid", "gurobi", "lpSolve", "cplex"),
solver.timelimit = 180,
max.rules = 2,
opt.model = c("gini", "error"),
greedy.level = 0.9,
import.external = T,
suppress.internal = F,
no.same.gender.children = F,
n0n1.cap = 40000,
verbose = F

)

http://github.com/profyliu/bsnsing

bscontrol 9

Arguments

bin.size the minimum number of observations required in a binarization bucket.

nseg.numeric the maximum number of segments the range of a numeric variable is divided
into for each inequality direction.

nseg.factor the maximum number of unique levels allowed in a factor variable.

num2factor an equality binarization rule will be created for each unique value of a numeric
variable (in addition to the inequality binarization attempt), if the number of
unique values of the numeric variable is less than num2factor.

node.size if the number of training cases falling into a tree node is fewer than node.size,
the node will become a leaf and no further split will be attempted on it; in addi-
tion, do not split a node if either child node that would result from the split con-
tains fewer than node.size observation. Default is 0, which indicates that the
node.size will be set automatically according to this formula: floor(sqrt(Number
of training cases)).

stop.prob if the proportion of the majority class in a tree node is greater than stop.prob,
the node will become a leaf and no further split will be attempted on it.

opt.solver a character string in the set ’enum’, ’enum_c’, ’gurobi’, ’cplex’, ’lpSolve’,
’greedy’ indicating the optimization solver to be used in the program. The
choice of ’cplex’ requires the package cplexAPI, ’gurobi’ requires the pack-
age gurobi, ’lpSolve’ requires the package lpSolve and ’enum_c’ requires the
.dll or .dylib file. The default is ’greedy’ because it is fast and does not rely
on other packages. The ’enum’ algorithm is the implicit enumeration method
which guarantees to find the optimal solution, typically faster than an optimiza-
tion solver. It is a tradeoff between the greedy heuristic and the mathematical
optimization methods.

solver.timelimit

the solver time limit in seconds. Currently only applicable to ’gurobi’, ’enum’
and ’enum_c’ solvers.

max.rules the maximum number of features allowed to enter an OR-clause split rule. A
small max.rules reduces the search space and regulates model complexity. De-
fault is 3.

opt.model a character string in the set ’gini’,’error’ indicating the optimization model to
solve in the program. The default is ’gini’. The choice of ’error’ is faster because
the optimization model is smaller. The default is ’gini’.

greedy.level a proportion value between 0 and 1, applicable only when opt.solver is ’greedy’.
In the greedy forward selection process of split rules, a candidate rule is added
to the OR-clause only if the split performance (gini reduction or accuracy) af-
ter the addition multiplied by greedy.level would still be greater than the split
performance before the addition. A higher value of greedy.level tend to more
aggressively produce multi-variable splits.

import.external

logical value indicating whether or not to try importing candidate split rules
from other decision tree packages. Default is True.

10 bslearn

suppress.internal

logical value indicating whether or not to suppress the feature binarization pro-
cess that creates the pool of binary features. If it is set to True, then only the fea-
tures imported from external methods (if import.external is True) will be used
in the optimal rule selection model. Default is False.

no.same.gender.children

logical value indicating whether or not to suppress splits that would result in
both children having the same majority class. Default is False.

n0n1.cap a positive integer. It is applicable only when the opt.solver is ’hybrid’ and the
opt.model is ’gini’. When the bslearn function is called, if the product of the
number of negative cases (n0) and the number of positive cases (n1) is greater
than this number, ’enum’ solver will be used; otherwise, gurobi solver will be
used.

verbose a logical value (TRUE or FALSE) indicating whether the solution details are to
be printed on the screen.

Value

An object of class bscontrol.

Examples

bscontrol() # display the default parameters
bsc <- bscontrol(stop.prob = 0.8, nseg.numeric = 10, verbose = TRUE)
bsc

bslearn Find the Optimal Boolean Rule for Binary Classification

Description

The function solves a mixed integer program (MIP) to either maximize the Gini reduction (opt.model
= ’gini’) or the number of misclassifications (opt.model = ’error’). The optimal rule serves as the
split condition in the classification tree built by bsnsing.

Usage

bslearn(bx, y, control = bscontrol())

Arguments

bx a data frame with binary (0 and 1) entries.
y an integer vector with binary entries.
control an object of class bscontrol(), specifying the algorithmic parameters. The

list should contain the following attributes: opt.model, a character string in
'gini','error' indicating the optimization model to solve, opt.solver, a char-
acter string in 'gurobi', 'cplex', 'lpSolve', 'enum', 'enum_c', 'greedy'
indicating the optimization method or solver to be used.

bsnsing 11

Value

a list containing the splitting solution.

Examples

Not run:
x <- auto[, c('mpg', 'cylinders', 'displacement')]
y <- ifelse(auto$origin == 'USA', 1L, 0L)
binarize x by y = 1
bx <- binarize(x, y, target = 1)
learn the optimal Boolean rule
bssol <- bslearn(bx, y, bscontrol(opt.solver = 'enum'))
cat(paste("Optimal rule:" , bssol$rules, "\n"))

End(Not run)

bsnsing Learn a Classification Tree using Boolean Sensing

Description

Depending on the arguments provided, either bsnsing.default or bsnsing.formula will be
called.

Usage

bsnsing(x, ...)

Arguments

x a data frame or a formula object.

... arguments passed on to bsnsing.default or bsnsing.formula.

Value

an object of class bsnsing for a two-class problem or an object of class mbsnsing for a multi-class
problem.

Examples

Not run:
Use the formula format
bs <- bsnsing(Class~., data = BreastCancer)
summary(bs)
For multi-class classification
bs <- bsnsing(Species ~ ., data = iris)
summary(bs)
summary(bs[[1]]) # display the tree for the first class

12 bsnsing.default

summary(bs[[2]]) # display the tree for the second class
summary(bs[[3]]) # display the tree for the third class
predict(bs, type = 'class') # the fitted class membership
predict(bs, type = 'prob') # the fitted probabilities

Use the (x, y) format, y must have two levels
y <- ifelse(iris$Species == 'setosa', 1L, 0L)
x <- iris[, c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width')]
bs <- bsnsing(x, y, verbose = TRUE)
summary(bs)

End(Not run)

bsnsing.default Learn a Classification Tree with Boolean Sensing

Description

This is the default method for bsnsing and handles binary classification only. bsnsing.formula,
which calls bsnsing.default as the basic tree builder, can handle multiclass classification prob-
lems. Missing values in numeric variables are imputed as the median of the non-missing ones, and
missing values in factor variables are treated as a separate level named ’NA’.

Usage

Default S3 method:
bsnsing(x, y, controls = bscontrol(), ...)

Arguments

x a data frame containing independent variables. Columns can be of numeric,
integer, factor and logical types. The column names must be proper identifiers
(e.g., must start with a letter, cannot contain special characters and spaces, etc.).

y a vector of the response variable. The response variable can be of an integer,
numeric, logical or factor type, but must have only two unique values. Typical
coding of a binary response variable is 0 (for negative case) and 1 (for positive
cases).

controls an object of class bscontrol.

... further argument to be passed to bsnsing.default.

Value

an object of class bsnsing.

bsnsing.formula 13

Examples

Not run:
y <- ifelse(iris$Species == 'setosa', 1L, 0L)
x <- iris[, c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width')]
bs <- bsnsing(x, y, verbose = TRUE)
summary(bs)

End(Not run)

bsnsing.formula Learn a Classification Tree using Boolean Sensing

Description

The program builds a binary classification tree for each unique value in the response variable. Each
tree classifies a target value against all the other values (internally coded as ’all.other’) in the re-
sponse variable. If the response variable is a numeric type, the number of unique values must
not exceed 30. There is no programmatic restriction on the number of unique levels for a factor
response.

Usage

S3 method for class 'formula'
bsnsing(formula, data, subset, na.action = stats::na.pass, ...)

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which bsnsing.formula is called.

subset an optional vector specifying a subset (in terms of index numbers, not actual
data) of observations to be used in the fitting process.

na.action a function which indicates what should happen when the data contain NAs. If
na.pass is used, bsnsing will still apply an internal NA treatment logic, as
follows: missing values in numeric variables will be replaced by the median of
the non-missing values of the variable; missing values in factor variables will be
treated as a spearate level named ’NA’.

... additional arguments to be passed to the low level fitting functions, e.g., ele-
ments in the bscontrol object.

Value

an object of bsnsing for a two-class problem or an object of mbsnsing for a multi-class problem.

14 GlaucomaMVF

Examples

Multi-class classification
Not run:
bs <- bsnsing(Species ~ ., data = iris)
summary(bs)
summary(bs[[1]]) # display the tree for the first class
summary(bs[[2]]) # display the tree for the second class
summary(bs[[3]]) # display the tree for the third class

Two-class classification
bs <- bsnsing(origin ~ mpg + displacement + horsepower + weight, data = auto, verbose = TRUE)
summary(bs)

End(Not run)

get_os Get the operating system type (windows, osx, linux).

Description

This function is for internal use, to determine the file extension of the bslearn shared library. .dylib
for oxs, .so for linux and .dll for windows.

Usage

get_os()

Value

a character string indicating the OS type

GlaucomaMVF GlaucomaMVF

Description

A test dataset

Usage

GlaucomaMVF

Format

A data frame with 170 rows and 67 variables:

Source

http://github.com/profyliu/bsnsing

http://github.com/profyliu/bsnsing

iris 15

iris iris

Description

A test data set.

Usage

iris

Format

A data frame with 150 rows and 5 variables.

Source

http://github.com/profyliu/bsnsing

mbsnsing-class A class that contains multi-class classification model built by bsnsing.
Can be used in summary and predict functions.

Description

A class that contains multi-class classification model built by bsnsing. Can be used in summary and
predict functions.

plot.bsnsing Generate latex code for plotting the bsnsing tree

Description

If the file argument is supplied, this function will invoke the external programs latex, dvips and
ps2pdf. If these programs are not available, only the latex code will be generated. If the file
argument is left empty, the latex code will be written to the console screen. The latex code utilizes
the following packages: pstricks, pst-node, pst-tree.

http://github.com/profyliu/bsnsing

16 plot.bsnsing

Usage

S3 method for class 'bsnsing'
plot(
object,
file = "",
class_labels = c(),
class_colors = c("red", "green"),
rule_font = c("footnotesize", "scriptsize", "tiny", "normalsize", "small"),
rule_color = "blue",
footnote = F,
landscape = F,
papersize = c("a0paper", "a1paper", "a2paper", "a3paper", "a4paper", "a5paper",

"a6paper", "b0paper", "b1paper", "b2paper", "b3paper", "b4paper", "b5paper",
"b6paper", "c0paper", "c1paper", "c2paper", "c3paper", "c4paper", "c5paper",
"c6paper", "b0j", "b1j", "b2j", "b3j", "b4j", "b5j", "b6j", "ansiapaper",
"ansibpaper", "ansicpaper", "ansidpaper", "ansiepaper", "letterpaper",
"executivepaper", "legalpaper"),

verbose = F,
...

)

Arguments

object an object of class bsnsing.

file a writable connection or a character string naming the file to write to. If not
supplied, the output will be written to the console.

class_labels a character vector of two elements for leaf node label (for 0 and 1). If empty, the
labels will be read from the bsnsing object.

class_colors a character vector of two elements for leaf node color (for 0 and 1)

rule_font a string specifying the font size of the split rule at each non-leaf node

rule_color a string specifying the color of the split rule and node, e.g., blue, gray, black, etc.
For a list of all usable colors, see https://en.wikibooks.org/wiki/LaTeX/Colors

footnote a boolean value indicating whether to add annotation text to the PDF page. The
default is False.

landscape a boolean value indicating if the PDF page should be in landscape layout. The
default is False.

papersize a string specifying the PDF paper size. The default is ’a0paper’.

Value

NA

Examples

Suppose bs is a bsnsing object
Not run:

plot.mbsnsing 17

plot(bs)
plot(bs, file = "/path/to/destination/filename.tex")

End(Not run)

plot.mbsnsing Generate latex code for plotting the bsnsing tree

Description

Generate latex code for plotting the bsnsing tree

Usage

S3 method for class 'mbsnsing'
plot(object)

Arguments

object an object of class mbsnsing.

predict.bsnsing Make Predictions with a Fitted bsnsing Model

Description

Implements the generic predict function to make predictions on new data using a trained bsnsing
model.

Usage

S3 method for class 'bsnsing'
predict(object, newdata = NULL, type = c("prob", "class"), ...)

Arguments

object a bsnsing model object.

newdata a optional data frame in which to look for variables for prediction. If omitted,
the fitted class or probability will be returned.

type a character string indicating the type of prediction. ’prob’ predicts the probabil-
ity of being a positive case (i.e., y = 1), and ’class’ predicts the class member-
ship.

... further arguments to predict.bsnsing.

18 predict.mbsnsing

Value

a vector containing the predicted values.

Examples

Not run:
Load data
n <- nrow(GlaucomaMVF)
train_index = sample(1:n, round(0.5*n))
test_index = setdiff(1:n, train_index)
Fit a model using training set
bs <- bsnsing(Class ~ ., data = GlaucomaMVF, subset = train_index)
Make predictions on the test set
pred <- predict(bs, GlaucomaMVF[test_index,], type = 'class')
Display the confusion matrix
table(pred, actual = GlaucomaMVF[test_index, 'Class'])

End(Not run)

predict.mbsnsing Make Predictions with a bsnsing Model

Description

Make Predictions with a bsnsing Model

Usage

S3 method for class 'mbsnsing'
predict(object, newdata = NULL, type = c("prob", "class"), ...)

Arguments

object an object of class mbsnsing.

newdata an optional data frame in which to look for variables for prediction. If omitted,
the fitted class or probability will be returned.

type a character string indicating the type of prediction. ’prob’ predicts the probabil-
ity of being in each class, and ’class’ predicts the class membership.

... further arguments to predict.mbsnsing.

Value

a data frame containing the predicted values.

print.bscontrol 19

Examples

Not run:
n <- nrow(iris)
train_index <- sample(1:n, round(0.5*n))
test_index <- setdiff(1:n, train_index)
Fit a model on the training set
bs <- bsnsing(Species ~ ., data = iris, subset = train_index)
Make predictions on the test set
pred <- predict(bs, iris[test_index,], type = 'class')
Display the confusion matrix
table(pred, actual = iris[test_index, 'Species'])
Predict the probabilities
predprob <- predict(bs, iris[test_index,], type = 'prob')
head(predprob)

End(Not run)

print.bscontrol Print the Object of Class bscontrol

Description

Print the Object of Class bscontrol

Usage

S3 method for class 'bscontrol'
print(x = bscontrol(), ...)

Arguments

x an object of class bscontrol.

... further arguments to the print function.

print.bsnsing Print the Object of Class bsnsing

Description

Print the Object of Class bsnsing

Usage

S3 method for class 'bsnsing'
print(x, print.call = T, ...)

20 print.summary.bsnsing

Arguments

x an object of class bsnsing.

print.call print out the function called, default TRUE

... further arguments

print.mbsnsing Print the Object of Class mbsnsing

Description

Print the Object of Class mbsnsing

Usage

S3 method for class 'mbsnsing'
print(x, ...)

Arguments

x an object of class mbsnsing.

... further arguments.

print.summary.bsnsing Print the Summary of bsnsing Model

Description

Print the Summary of bsnsing Model

Usage

S3 method for class 'summary.bsnsing'
print(x, print.call = T, ...)

Arguments

x an object of class summary.bsnsing.

print.call a logical value, print out the function called if TRUE.

... further arguments.

print.summary.mbsnsing 21

print.summary.mbsnsing

Print the summary of mbsnsing model fits

Description

Print the summary of mbsnsing model fits

Usage

S3 method for class 'summary.mbsnsing'
print(x, ...)

Arguments

x an object of class summary.mbsnsing.

... further arguments.

prt.bscontrol Print the Object of Class bscontrol

Description

Print the Object of Class bscontrol

Usage

prt.bscontrol(control = bscontrol())

Arguments

control an object of class bscontrol.

22 prt.mbsnsing

prt.bsnsing Print the Object of Class bsnsing

Description

Print the Object of Class bsnsing

Usage

prt.bsnsing(object, print.call = T, ...)

Arguments

object an object of class bsnsing.

print.call print out the function called, default TRUE

... further arguments

prt.mbsnsing Print the Object of Class mbsnsing

Description

Print the Object of Class mbsnsing

Usage

prt.mbsnsing(object, ...)

Arguments

object an object of class mbsnsing.

... further arguments.

prt.summary.bsnsing 23

prt.summary.bsnsing Print the Summary of bsnsing Model

Description

Print the Summary of bsnsing Model

Usage

prt.summary.bsnsing(object, print.call = T, ...)

Arguments

object an object of class summary.bsnsing.

print.call a logical value, print out the function called if TRUE.

... further arguments.

prt.summary.mbsnsing Print the summary of mbsnsing model fits

Description

Print the summary of mbsnsing model fits

Usage

prt.summary.mbsnsing(object, ...)

Arguments

object an object of class summary.mbsnsing.

... further arguments.

24 ROC_func

ROC_func Plot the ROC curve and calculate the AUC

Description

This is a general utility function, not part of the bsnsing functionality.

Usage

ROC_func(
df,
label_colnum,
score_colnum,
pos.label = "1",
plot.ROC = F,
add_on = F,
color = "black",
lty = 1

)

Arguments

df a data frame which must contain at least these two columns: the prediction
scores (numeric values, not necessarily be between 0 and 1) and the true class
labels.

label_colnum the column index of the scores column in df

score_colnum the column index of the true class labels column in df

pos.label a character string matching the positive class label used in the class labels col-
umn

plot.ROC a logical value indicating whether the ROC curve should be plotted

add_on a logical value indicating whether the ROC curve should be added to an existing
plot

color a character string specifying the color of the ROC curve in the plot

lty line type used in the plot (1 solid, 2 dashed, etc.)

Value

the area under the curve (AUC) value

Examples

Not run:
n <- nrow(BreastCancer)
trainset <- sample(1:n, 0.7*n) # randomly sample 70\
testset <- setdiff(1:n, trainset) # the remaining is for testing
Build a tree to predict Class, using all default options

show.bsnsing 25

bs <- bsnsing(Class~., data = BreastCancer[trainset,])
summary(bs) # display the tree structure
pred <- predict(bs, BreastCancer[testset,], type='class')
actual <- BreastCancer[testset, 'Class']
table(pred, actual) # display the confusion matrix
Plot the ROC curve and display the AUC
ROC_func(data.frame(predict(bs, BreastCancer[testset,]),

BreastCancer[testset,'Class']), 2, 1,
pos.label = 'malignant', plot.ROC=TRUE)

Plot the tree to PDF and generate the .tex file
plot(bs, file='../bsnsing_test/fig/BreastCancer.pdf')

End(Not run)

show.bsnsing Generate latex code for plotting the bsnsing tree

Description

If the file argument is supplied, this function will invoke the external programs latex, dvips and
ps2pdf. If these programs are not available, only the latex code will be generated. If the file
argument is left empty, the latex code will be written to the console screen. The latex code utilizes
the following packages: pstricks, pst-node, pst-tree.

Usage

show.bsnsing(
object,
file = "",
class_labels = c(),
class_colors = c("red", "green"),
rule_font = c("footnotesize", "scriptsize", "tiny", "normalsize", "small"),
rule_color = "blue",
footnote = F,
landscape = F,
papersize = c("a0paper", "a1paper", "a2paper", "a3paper", "a4paper", "a5paper",

"a6paper", "b0paper", "b1paper", "b2paper", "b3paper", "b4paper", "b5paper",
"b6paper", "c0paper", "c1paper", "c2paper", "c3paper", "c4paper", "c5paper",
"c6paper", "b0j", "b1j", "b2j", "b3j", "b4j", "b5j", "b6j", "ansiapaper",
"ansibpaper", "ansicpaper", "ansidpaper", "ansiepaper", "letterpaper",
"executivepaper", "legalpaper"),

verbose = F,
...

)

Arguments

object an object of class bsnsing.

26 show.mbsnsing

file a writable connection or a character string naming the file to write to. If not
supplied, the output will be written to the console.

class_labels a character vector of two elements for leaf node label (for 0 and 1). If empty, the
labels will be read from the bsnsing object.

class_colors a character vector of two elements for leaf node color (for 0 and 1)

rule_font a string specifying the font size of the split rule at each non-leaf node

rule_color a string specifying the color of the split rule and node, e.g., blue, gray, black, etc.
For a list of all usable colors, see https://en.wikibooks.org/wiki/LaTeX/Colors

footnote a boolean value indicating whether to add annotation text to the PDF page. The
default is False.

landscape a boolean value indicating if the PDF page should be in landscape layout. The
default is False.

papersize a string specifying the PDF paper size. The default is ’a0paper’.

verbose a logical value, default is FALSE.

... further parameters to the plot function.

Value

NA

Examples

Suppose bs is a bsnsing object
Not run:
plot(bs)
plot(bs, file = "/path/to/destination/filename.tex")

End(Not run)

show.mbsnsing Generate latex code for plotting the bsnsing tree

Description

Generate latex code for plotting the bsnsing tree

Usage

show.mbsnsing(object, ...)

Arguments

object an object of class mbsnsing.

... further arguments to the plot function.

summary.bsnsing 27

summary.bsnsing Summarize the bsnsing Model Fits

Description

Summarize the bsnsing Model Fits

Usage

S3 method for class 'bsnsing'
summary(object = stop("no 'object' arg"), ...)

Arguments

object an object of class bsnsing.

... further arguments.

Value

a list of detailed information in the given object.

summary.mbsnsing Summarize mbsnsing Model Fits

Description

Summarize mbsnsing Model Fits

Usage

S3 method for class 'mbsnsing'
summary(object = stop("no 'object' arg"), ...)

Arguments

object an object of class mbsnsing.

... further arguments.

Value

a list of detailed information in the given object.

Index

∗ datasets
auto, 4
BreastCancer, 8
GlaucomaMVF, 14
iris, 15

as.data.frame, 13
auto, 3, 4

binarize, 3, 4, 5, 6
binarize.factor, 3, 5
binarize.numeric, 3, 6
binarize.y, 3, 7
BreastCancer, 3, 8
bscontrol, 3, 8, 10, 12, 13, 19, 21
bslearn, 3, 10
bsnsing, 3, 8, 10, 11, 13, 16–20, 22, 23, 25, 27
bsnsing-package, 2
bsnsing.default, 3, 11, 12
bsnsing.formula, 3, 11, 12, 13

formula, 11, 13

get_os, 14
GlaucomaMVF, 3, 14

iris, 3, 15

mbsnsing, 13, 17, 18, 20–23, 26, 27
mbsnsing (mbsnsing-class), 15
mbsnsing-class, 15

plot.bsnsing, 15
plot.mbsnsing, 17
predict.bsnsing, 3, 17
predict.mbsnsing, 3, 18
print.bscontrol, 19
print.bsnsing, 19
print.mbsnsing, 20
print.summary.bsnsing, 20
print.summary.mbsnsing, 21

prt.bscontrol, 21
prt.bsnsing, 22
prt.mbsnsing, 22
prt.summary.bsnsing, 23
prt.summary.mbsnsing, 23

ROC_func, 3, 24

show.bsnsing, 3, 25
show.mbsnsing, 26
summary.bsnsing, 3, 20, 23, 27
summary.mbsnsing, 3, 21, 23, 27

28

	bsnsing-package
	auto
	binarize
	binarize.factor
	binarize.numeric
	binarize.y
	BreastCancer
	bscontrol
	bslearn
	bsnsing
	bsnsing.default
	bsnsing.formula
	get_os
	GlaucomaMVF
	iris
	mbsnsing-class
	plot.bsnsing
	plot.mbsnsing
	predict.bsnsing
	predict.mbsnsing
	print.bscontrol
	print.bsnsing
	print.mbsnsing
	print.summary.bsnsing
	print.summary.mbsnsing
	prt.bscontrol
	prt.bsnsing
	prt.mbsnsing
	prt.summary.bsnsing
	prt.summary.mbsnsing
	ROC_func
	show.bsnsing
	show.mbsnsing
	summary.bsnsing
	summary.mbsnsing
	Index

